

## $\nu_{e}$ -Bar Appearance at T2K with VALOR

Raj Shah, Department of Physics University of Oxford, RAL <u>raj.shah@physics.ox.ac.uk</u>

On behalf of the T2K collaboration



## Outline

Presented here are studies performed to study the effect of sampling of the nuisance parameter space to generate a distribution of the test statistic given the null hypothesis of no  $v_e$ Bar appearance

## **P Value:**

The probability to make a measurement as or more extreme than seen in data given the null hypothesis is true. <u>Null Hypothesis:</u>

No  $v_e$ Bar appearance ( $\beta = 0$ ) ( $P_{osc}(v_\mu Bar \rightarrow v_e Bar) = \beta P_{osc}(PMNS)$ )

# **P Value**

- (1) Generate a fake data set T for null hypothesis
- (2) Compute test statistic S for T
- (3) Fill distribution with ensemble of statistics S<sub>i</sub>
- (4) Calculate data statistic  $S_D$
- (5) Compare  $S_D$  with  $S_i$



| Parameter(s)                                            | Prior   | Range                                                    |
|---------------------------------------------------------|---------|----------------------------------------------------------|
| $sin^2 \theta_{23}$                                     | uniform | [0.3; 0.7]                                               |
| $\sin^2 2\theta_{13}$ ( $\sin^2 \theta_{13}$ ) reactors | gauss   | $0.085 \pm 0.005$                                        |
| $sin^2 2\theta_{12}$                                    | gauss   | $0.846 \pm 0.021$                                        |
| $ \Delta m_{32}^2 $ (NH) / $ \Delta m_{31}^2 $ (IH)     | uniform | $[2;3] \times 10^{-3} \text{ eV}^2/c^4$                  |
| $\Delta m_{21}^2$                                       | gauss   | $(7.53 \pm 0.18) \times 10^{-5} \text{ eV}^2/\text{c}^4$ |
| $\delta_{CP}$                                           | uniform | $[-\pi; +\pi]$                                           |
| Mass Hierarchy                                          | uniform | 0.5 for NH and IH                                        |

**T2K Run1-4 Best fit + 2015** 

### <u>T2K</u>

Long baseline v oscillation experiment
4 sample fit (e-like/µ-like v/vBar)
Flux and x-sec constrained by ND

Oscillation parameters = nuisance
e-like/µ-like v and µ-like vBar constrain nuisance parameters
ND fit -> Prior for Super-K fit
Nuisance marginalised out

## **Q: What are the variations of my null?**

## **Rate only analysis**

#### <u>"Data" = Asimov (MC) data</u>

(1)Throw expectation  $T_{exp}$  from priors (nuisance parameter fluctuations) (2)Likelihood weight L = L( $T_{data}|T_{exp}$ ) (3)Statistical fluctuation of  $T_{exp}$ :  $T_{obs}$ (4)Distribution: 10k  $T_{obs}$  from 100k  $T_{exp}$ (5) $T_{obs}$  weighted by L

### Statistic: #Events in $\nu_e$ Bar sample



#### Rate + shape

Statistic:  $\Delta \chi = \chi^2(\beta=1) - \chi^2(\beta=0)$  (marginalised)



#### **Summary**

•Little effect with current statistics

•Significant at larger POT

•vBar e-like posterior = conservative

#### **References**

 physics.rockefeller.edu/luc/ proceedings/phystat2007.pdf

 <u>https://arxiv.org/abs/1605.01626</u> -<u>NuFact2015 K. Duffy</u>

